The density function of the Logistic distribution:
$$ f(x; \mu, \sigma) = \dfrac{\exp\left( - \frac{x-\mu}{\sigma} \right)}{\sigma \left( 1 + \exp\left( - \frac{x-\mu}{\sigma} \right) \right)^2 } $$Parameters:
mu_par
is $\mu$sigma_par
is $\sigma$Definition:
template<typename Ta, typename Tb> statslib_constexpr return_t<Ta> dlogis(const Ta x, const Tb mu_par, const Tb sigma_par, const bool log_form = false);
Computes the density function.
Examples:
// parameters double mu = 0.0; double sigma = 1.0; // standard input double dens_val = stats::dlogis(0.5,mu,sigma); double log_dens_val = stats::dlogis(0.5,mu,sigma,true); // Armadillo input arma::mat X(10,1); X.fill(0.5); arma::mat dens_vals_mat = stats::dlogis(X,mu,sigma); arma::mat log_dens_vals_mat = stats::dlogis(X,mu,sigma,true);
Definition:
template<typename Ta, typename Tb> statslib_constexpr return_t<Ta> plogis(const Ta x, const Tb mu_par, const Tb sigma_par, const bool log_form = false);
Computes the cumulative distribution function (CDF).
Examples:
// parameters double mu = 0.0; double sigma = 1.0; // standard input double prob_val = stats::plogis(0.5,mu,sigma); double log_prob_val = stats::plogis(0.5,mu,sigma,true); // Armadillo input arma::mat X(10,1); X.fill(0.5); arma::mat prob_vals_mat = stats::plogis(X,mu,sigma); arma::mat log_prob_vals_mat = stats::plogis(X,mu,sigma,true);
Definition:
template<typename Ta, typename Tb> statslib_constexpr Ta qlogis(const Ta p, const Tb mu_par, const Tb sigma_par);
Computes the quantile function.
Examples:
// parameters double mu = 0.0; double sigma = 1.0; // standard input double quant_val = stats::qlogis(0.7,mu,sigma); // Armadillo input arma::mat X(10,1); X.fill(0.7); arma::mat quant_vals_mat = stats::qlogis(X,mu,sigma);
Definition:
// random engine seeding template<typename T> statslib_inline return_t<T> rlogis(const T mu_par, const T sigma_par, rand_engine_t& engine); // seeding values template<typename T> statslib_inline return_t<T> rlogis(const T mu_par, const T sigma_par, uint_t seed_val = std::random_device{}()); // matrix output template<typename mT, typename eT> statslib_inline mT rlogis(const uint_t n, const uint_t k, const eT mu_par, const eT sigma_par);
Generates pseudo-random draws.
Examples:
// parameters double mu = 0.0; double sigma = 1.0; // standard input double rand_val = stats::rlogis(mu,sigma); // Armadillo output: 10 x 1 matrix arma::mat rand_mat = stats::rlogis<arma::mat>(10,1,mu,sigma);