The density function of the Beta distribution:
$$ f(x; \alpha, \beta) = \frac{1}{\mathcal{B}(\alpha,\beta)} x^{\alpha - 1} (1-x)^{\beta-1} $$where $\mathcal{B}(\alpha,\beta)$ is the beta function.
Parameters:
a_par
is $\alpha$b_par
is $\beta$Definition:
template<typename Ta, typename Tb> statslib_constexpr return_t<Ta> dbeta(const Ta x, const Tb a_par, const Tb b_par, const bool log_form = false);
Computes the density function.
Examples:
// parameters double alpha = 3.0; double beta = 2.0; // standard input double dens_val = stats::dbeta(0.5,alpha,beta); double log_dens_val = stats::dbeta(0.5,alpha,beta,true); // Armadillo input arma::mat X(10,1); X.fill(0.5); arma::mat dens_vals_mat = stats::dbeta(X,alpha,beta); arma::mat log_dens_vals_mat = stats::dbeta(X,alpha,beta,true);
Definition:
template<typename Ta, typename Tb> statslib_constexpr return_t<Ta> pbeta(const Ta x, const Tb a_par, const Tb b_par, const bool log_form = false);
Computes the cumulative distribution function (CDF).
Examples:
// parameters double alpha = 3.0; double beta = 2.0; // standard input double prob_val = stats::pbeta(0.5,alpha,beta); double log_prob_val = stats::pbeta(0.5,alpha,beta,true); // Armadillo input arma::mat X(10,1); X.fill(0.5); arma::mat prob_vals_mat = stats::pbeta(X,alpha,beta); arma::mat log_prob_vals_mat = stats::pbeta(X,alpha,beta,true);
Definition:
template<typename Ta, typename Tb> statslib_constexpr Ta qbeta(const Ta p, const Tb a_par, const Tb b_par);
Computes the quantile function.
Examples:
// parameters double alpha = 3.0; double beta = 2.0; // standard input double quant_val = stats::qbeta(0.7,alpha,beta); // Armadillo input arma::mat X(10,1); X.fill(0.7); arma::mat quant_vals_mat = stats::qbeta(X,alpha,beta);
Definition:
// random engine seeding template<typename T> statslib_inline return_t<T> rbeta(const T a_par, const T b_par, rand_engine_t& engine); // seeding values template<typename T> statslib_inline return_t<T> rbeta(const T a_par, const T b_par, uint_t seed_val = std::random_device{}()); // matrix output template<typename mT, typename eT> statslib_inline mT rbeta(const uint_t n, const uint_t k, const eT a_par, const eT b_par);
Generates pseudo-random draws.
Examples:
// parameters double alpha = 3.0; double beta = 2.0; // standard input double rand_val = stats::rbeta(alpha,beta); // Armadillo output: 10 x 1 matrix arma::mat rand_mat = stats::rbeta<arma::mat>(10,1,alpha,beta);